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Contribution from the Departamento de Quı´mica-Fı́sica, UniVersidad de Murcia, Campus de Espinardo,
30071 Murcia, Spain, and Departament de Quı´mica Orgànica, UniVersitat de Barcelona,
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Abstract: Nonspherical particles or molecules experience an ordering effect in the presence of obstacles due
to the restrictions they place on the orientation of those molecules that are in their proximity. Obstacles may
be the limits of a membrane in which the molecule is embedded, oriented mesoscopic systems such as bicelles,
or membrane fragments used to induce weak protein alignment in a magnetic field. The overall shape of most
proteins can be described to a good approximation by an ellipsoidal particle. Here we describe and solve
analytically the problem of the orientation of ellipsoidal particles by planar obstacles. Simple expressions are
derived for the orientational distribution function and the order parameter. These expressions allow the analytical
calculation of the residual dipolar couplings for a protein of known three-dimensional structure oriented by
steric effects. The results are in good agreement with experiment and with the results of previously described
simulations. However, they are obtained analytically in a fraction of the time and therefore open the possibility
to include the optimization of the overall shape in the determination of three-dimensional structures using
residual dipolar coupling constraints. The equations derived are general and can also be applied to problems
of a completely different nature. In particular, previous equations describing the orientation of particles embedded
in membranes are verified and generalized here.

Introduction

The use of dipolar coupling as structural constraints has had
an enormous impact on the determination of the structure of
proteins by NMR.1-3 The introduction of dipolar couplings
increases the precision and the accuracy of the structures4-6 and,
when complemented with other long-range constraints such as
those derived from paramagnetic effects or chemical shift
information, may provide the fold of the protein even without
NOE information.7-9 The ease of assignment of dipolar
couplings makes them obvious tools for NMR-based high-
throughput strategies of protein structure determination.10,11The

long-range angular information provided is crucial for the
determination of the relative orientation of individual domains
in multidomain protein or of individual proteins in multi-protein
complexes.12,13 However, long-range distance information,
completing the characterization of the protein global shape, is
only available indirectly from dipolar coupling measurements
through the alignment tensor. Alternatively, relaxation time
measurements may allow the characterization of the global shape
through the rotational diffusion tensor. However, proper separa-
tion between global tumbling and internal motion can be
nontrivial,14,15but it can be greatly facilitated if the protein shape
is known because recent programs based on rigorous hydrody-
namic theory can be used to calculate the global tumbling from
the protein shape.16

Global shape optimization has not yet been introduced in the
structure determination process due in part to the lack of fast
computational methods for calculating the relevant observables
from a given structure. In addition, the availability of an
analytical function allowing the calculation of the overall
orientation and the individual dipolar couplings from any given
three-dimensional structure would greatly facilitate the pos-
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sibility of using dipolar couplings for ab initio protein structure
determination.

Measurement of residual dipolar couplings requires a partial
orientation of the protein. This is usually achieved by weak
interaction with diluted oriented particles, such as bicelles,17

purple membrane fragments,18,19 filamentous phages,20,21 or
cellulose microcrystals.22 The interaction with uncharged bicelles
is mainly sterical and thus reflects the global shape of the
protein. This is corroborated by the good agreement between
the experimental values and the simulation results of the
orientation of the protein that takes into account the volume
excluded by obstacles.23

The global shape of most natural proteins can be described,
to a good approximation, by an ellipsoid. Local deviations of
the actual rigid three-dimensional structure from the regular
geometrical object will often be averaged out by fast dynamics
of the surface side chains and by weak interactions with the
orienting obstacle.

Lipid bilayers act primarily as a cellular permeability barrier
and as a matrix for several bilayer constituents. Membrane
proteins are the protagonists of most of the active processes
performed by biological membranes. Membrane functions are,
to a large degree, mediated by orientational or conformational
changes that result in the activation (or deactivation) of
membrane proteins, as for example the opening of a membrane
channel. These structural reorganizations are often associated
with a change in the orientation of the protein, which will in
part be determined by its interaction with the plane of the
membrane. Therefore, information concerning the orientation
of proteins in cellular membranes becomes critical in elucidating
mechanisms by which these changes modify functional char-
acteristics of membrane proteins.

In this paper, we show that the global orientation of an
ellipsoid by a planar obstacle can be calculated analytically with
a simple expression. Moreover, we show that the use of the
gyration tensor, calculated from the three-dimensional atomic-
level structure of the protein, provides analytical predictions
of the individual dipolar couplings that are in very good
agreement with experiment and with the results of numerical
calculations.

The organization of this paper is as follows. Our starting point
is a general theory for the restrictions in position and orientation
of particles coexisting with large obstacles, which is subse-
quently particularized to planar obstacles. An analytical solution
of this problem is feasible for ellipsoidal particles. The concepts
involved are simple, but the description of the physical and
geometrical details is mathematically complex and lengthy.
Therefore, we have presented that part of the work separately
from the main body of this paper in an Appendix (see
Supporting Information). Thus, in the following section we
present directly the fundamental results for the orientation of
ellipsoidal particles by planar obstacles, and then we proceed
with the first practical application, in the problem of the
orientational distribution of particles confined in a planar

membrane. The order parameter for ellipsoidal particles is
evaluated as a function of some ratios of particle dimensions
and membrane thickness. Finally, we describe the calculation
of order parameter and alignment tensor for a system of
ellipsoidal particles oriented by a liquid crystalline suspension
of platelets. The results are employed to predict NMR dipolar
couplings of globular proteins oriented by bicelles. A procedure
to calculate analytically the order parameter and the dipolar
couplings in real proteins is described in detail, and examples
of this application are presented and discussed.

General Aspects

The orientation of rigid hard particles by liquid crystals has
been calculated in the past using a variety of models. Although
both long-range and short-range interactions have been consid-
ered, repulsive interactions have been recognized as an important
ordering mechanism. The shape of solutes, needed to calculate
the orientation restrictions imposed by the liquid crystalline
phase, has been introduced using hard parallelepipeds,24 shape
functions based on linear dimensions,25 or by a second-rank
tensor defined by analogy to the inertia tensor with group
dimensions instead of masses.26 The short-range interactions
have been modeled as an elastic force opposing the displacement
of a continuum mesophase27 or by an orienting potential based
on the angle between the surface normal and the mesophase
director, integrated over the molecular surface.28 Zweckstetter
and Bax used an explicit representation of components of diluted
mesophases as hard obstacles and calculated the induced
orientation from the excluded space, using an atomic representa-
tion of the protein solute.23 In this work, we also represent the
mesophase as a planar obstacle but we model the shape of the
protein to be oriented as an ellipsoid. This allows the analytical
computation of the distribution of particle orientations.

The possible orientations of a rigid, hard particle in the
presence of an oriented hard obstacle will depend on the distance
from the particle to the obstacle, and the size and shape of both
bodies will determine the form of the dependence. If the
separation distance is beyond a certain limit, the distribution of
orientations will be that typical of a free particle. Below that
limit only some orientations are possible; this is the origin of
the induced orientational ordering of the particle. Finally, there
will be another limit below which the particle cannot be
positioned.

In this work, we intend to obtain the distribution of particle
orientations with reference to theZ axis of a laboratory-fixed
coordinate system that coincides with thez axis normal to the
planar obstacles. If the particles are axisymmetric, the orientation
is specified just by the angle subtended by the symmetry axis
and the Z direction, θ, with a probability densityg(θ).
Alternatively, we may usec t cosθ as the angular variable,
with a probability densityp(c) t g(c)/sin θ. The orientational
preference caused by the obstacles is measured by experimental
properties that depend directly on the second moment of
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the order parameter,S,

whereP2 is the second Legendre polynomial, and

The derivation of the orientational distribution function begins
with the formulation of a joint position-orientation distribution
function that has to be integrated over the range of positional
variables allowed within the system volume. For details, see
section 1 in the Appendix.

Planar Obstacles and Ellipsoidal Particles

The systems considered in this work contain the following
elements: (i) prolate ellipsoidal particles with semiaxesa, b,
andb > a, with axial ratiop ) b/a > 1, and (ii) planar obstacles,
hereafter called planes or platelets. The dimensions of the plane
are much larger than the largest particle dimension, so that end
effects can be neglected. The reference frame system is obstacle-
fixed, with itszaxis perpendicular to the plane. The orientation
of the ellipsoid is given by the angleθ subtended by its
symmetry axis (that alongb in the prolate ellipsoid) andz. Its
position is defined by the distance alongz from the center of
the ellipsoid to the plane.

The system in which all our applications are based consists
of a single plane of surfaceA and a system of volume,Vt )
Azend, where the particle’s center may lie, above one of the faces
of the plane limited by a heightzend over the plane (Figure 1).
Up to three regions can be distinguished within this volume.
From z ) 0 to z ) a, we have a forbidden region that is
absolutely excluded for the particle’s center, because within it
the ellipsoid and the obstacle overlap necessarily; its volume is
Vb ) Aa. Betweenz ) a andz ) b, we have a region where
the orientation of the particle is restricted: a given value ofθ
is either possible or impossible depending on the value ofz.
Finally, beyondz ) b and up tozend, there is a region where
the orientation of the particle is not conditioned by the obstacle
and adopts the distribution corresponding to free particles. We
must consider two cases: (i) whenzend> b as in Figure 1, with
Vr ) A(b - a) andVf ) A(zend - b) and (ii) whenzend < b; in
the latter case, the restricted region is not as large as it could
be, Vr ) A(zend - a) and there is no free region, i.e.,Vf ) 0.

For a system with distinct regions,p(c), 〈c2〉, andS can be
evaluated as a sum of contributions from each region (see

Appendix, section 1). In the unconstrained region (f), pf(c) is
uniform and 〈c2〉f ) 1/3. Then, the problem reduces to the
evaluation of,pr(c) and〈c2〉r. This is described in the Appendix,
with the results given by eqs A40 and A41. When the results
for both regions are combined, we arrive at the final expressions.
The normalized probability density forc t cosθ is

and the second moment of the distribution is

Q is a numerical constant determined by the normalization of
p(c).

The result ofQ is only needed to evaluatep(c). It does not
enter in the calculation of〈c2〉 and S. Instead ofzend, region
volumes can be used in eqs 3-5. Note thatzend ) Vt/A ) (Vb

+ Vr + Vf)/A, with Vf ) 0 if zend < b.
In eqs 3-5 we introduced the functions

for which analytical results can be formulated (eqs 2.272.2 and
2.271.3 in Gradshteyn and Ryzhik.29):

and

with u being a shorthand notation for

Vf and Vr are the volumes of the free and restricted regions,
respectively, andc0 is a value that limits cosθ within the interval
(-c0, +c0). The expressions for these quantities depend on
which of the two following cases apply:

The above results provide a complete description of the
orientation of the ellipsoidal particles referred to the localzaxis

(29) Gradshteyn, I. S.; Ryzhik, I. M.Table of Integrals, Series and
Products; Academic Press: New York, 1980.

Figure 1. Side view of the system above one of the faces of a planar
obstacle, showing the definition of the two main variables,z and θ,
and the three possible regions.

S≡ 〈P2(cosθ)〉 ) 1
2
(3〈cos2 θ〉 - 1) (1)

〈c2〉 ≡ 〈cos2 θ〉 ) ∫0

π
dθg(θ)cos2 θ ) ∫-1

+1
dcc2p(c) (2)

p(c) ) 2πQA{zend- b[(1 - p-2)c2 + p-2]1/2} (3)

〈c2〉 )

c0
3

3
zend- bI2(p,c0)

c0zend- bI0(p,c0)
(4)

Q ) {4πA[c0zend- bI0(p,c0)]
-1} (5)

In(p,x) ) ∫0

x
dccnxp-2 + (1 - p-2)c2 (6)

I0(p,x) ) xu
2

+ p-2

2x1- p-2
ln

xx1 - p-2 + u

p-1
(7a)

I2(p,x) ) xu3

4(1 - p-2)
- p-2xu

8(1 - p-2)
-

p-4

8(1 - p-2)3/2
ln

x1 - p-2 + u

p-1
(7b)

u ) xp-2 + (1 - p-2)x2 (8)

if zend> b, Vf ) A(zend- b), Vr ) A(b - a), and
c0 ) 1

if zend< b, Vf ) 0, Vr ) A(zend- a), and

c0 ) (zend
2 - a2

b2 - a2 )1/2

(9)
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normal to the plane. For more details, see sections 3 and 4 of
the Appendix.

Particle Embedded in a Planar Membrane

A particular application of the results presented in the previous
section concerns the orientation of an ellipsoidal particle
embedded in the volume confined by the two parallel inter-
faces of a lipid bilayer. We suppose that the membrane is a
planar layer of thicknessh (Figure 2). The system volume,
comprised between the two hard walls, can be divided into two
equivalent subsystems of heightzend ) h/2, each of which can
be represented by the volume at one of the planar faces
considered in the preceding section. Thus, eqs 3-5 apply to
the present case. Again, we can distinguish two situations
corresponding to (i)h > 2b, with the largest possible restricted
region, and (ii)h < 2b, with a shorter restricted region and no
free region (Figure 2A and B, respectively). The main results
are

Previously, the problem of orientation of elongated particles
confined in a membrane was treated and analytically solved by

Huertas et al.30 for the special case of a very thin and long rod
of lengthL, with the following results:

or

These results are a particular case of our present more general
treatment, makingL ) 2b in the limit of p f ∞. In this limit,
we haveI0(∞, x) ) x2/2 andI2(∞, x) ) x4/4. Placing these values
into eqs 10 and 11, we reproduce the results of Huertas et al.30

The dependence of the order parameter,S, on the geometrical
dimensions of the system can be illustrated by graphing
numerical data from eqs 6-11. In Figure 3 we present the
dependence ofS on the ratio of the membrane thickness,h, to
the longest particle dimension, 2b, with different values of the
axial ratio. The values ofSgo from 0, for very thick membranes,
to -0.5, proper of a perpendicular orientation, whenh ) 2a,
below which the particle just does not fit within the membrane.

The above-mentioned limiting value for the long rod is a good
check of the correctness of our theoretical results, which were
obtained after lengthy algebra (see Appendix). Anyhow, at
this point we have conducted a numerical verification of our
equations, comparing their numerical results with those of a
simulation that is simple and fast for our problem. Simulation
results, plotted along with the theoretical ones in Figure 3,
confirm the validity of the latter.

Alignment by Liquid Crystalline Bicelles

Alignment of globular proteins, for the determination of NMR
dipolar couplings, can be achieved in a dilute liquid crystalline
suspension of bicelles, which play the role of the planar obstacles
in our theory. Bicelles are phospholipid micelles of discoidal
shape with a diameter that is large compared to their thickness.31

The proteins are represented by ellipsoidal particles. As
discussed below, this is an acceptable representation of the
globular shape of many proteins.

(30) Huertas, M. L.; Cruz V.; Lo´pez Cascales J. J.; Acun˜a A. U.; Garcı´a
de la Torre J.Biophys. J. 1996, 71, 1428-1439.

(31) Vold, R. R.; Prosser, R. S.J. Magn. Reson. B1996, 113, 267-271.

Figure 2. Ellipsoidal particle within a planar membrane of thickness
h ) 2zend, in the two caseszend > b andzend < b, showing the different
regions. (A) case withh > 2b, showing a free region. (B) Case withh
< 2b, without a free region.

if h > 2b, c0 ) 1, and S)
I0(p,1) - 3I2(p,1)

2[h/2b - I0(p,1)]
(10)

if h < 2b, c0 is given by eq 9 and

S)
(h/2b)(c0

3 - c0) + I0(p,c0) - 3I2(p,c0)

2[(h/2b)c0 - I0(p,c0)]
(11)

Figure 3. Order parameter,S, for a prolate ellipsoid (p ) b/a > 1)
embedded in a membrane of thicknessh. The various curves, from top
to bottom correspond top ) 4/3, 2, 4, and 40. Note that the lowest
possible value ofh/b is a/b ) 1/p. The data points are results of
simulations forp ) 4/3 (the error bars are smaller than the size of the
points).

S) - 1
8(h/L) - 4

(h > L) (12)

S) - 1
2
[1 - 1/2(h/L)2] (h e L) (13)
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Let us callC the known mass concentration of bicelles. Their
volume fraction isV ) C/F, whereF is their density. If the total
volume of the system isV, the volume occupied by the bicelles
is Vp ) VV and the total planar area of the bicelles can be
assumed to beA ) 2VV/δ, whereδ is the thickness of the bicelle.
This area defines a forbidden and a restricted region. The total
volumes of the forbidden and restricted regions areVb ) 2VVa/δ
andVr ) 2VV(b - a).32 The parameterzend in eqs 3-5, which
defines the maximum distance from the surface of the planar
obstacle, can be calculated from the ratio between the volume
not occupied by the bicelles (Vt ) V - Vp) and the areaA.

Finally, c0 ) 1 since the restricted region has the largest possible
thickness (b - a). Thus, for this problem, the orientational
statistics is determined by a distribution function

and an order parameter

where the subscript perp indicates that the direction of reference
is perpendicular to the planar obstacles, as we have been
assuming so far. The calculated order parameters for ellipsoids
with different axial ratios are plotted as a function of the lipid
mass concentration in Figure 4.

Dipolar Couplings in NMR Spectroscopy

The dipolar coupling,DPQ, between a pair of spin1/2 nuclei,
P and Q, separated by a distancerPQ, is related to the degree of
orientation of the vector joining the two nuclei with respect to

the direction of the magnetic field:

whereµ0 is the vacuum magnetic permittivity,γP and γQ are
the gyromagnetic ratios,h is Planck’s constant, anddPQ is a
dimensionless quantity, with a maximum value of unity, that
describes the degree of orientation of thePQ vector with respect
to the magnetic field. The quantitydPQ can expressed as the
productdPQ ) -SLSSmol, where

andSLS is the Lipari-Szabo generalized order parameter, usually
not far from unity, which accounts for the effect of fast,
low-amplitude motion of the internuclear vector. In eq 18,v )
(cosν1

PQ,cosν2
PQ,cosν3

PQ) is a unitary vector in the direction of
vector PQ, which makes anglesν1

PQ, ν2
PQ, and ν3

PQ with the
particle fixed axes.Aij are the components of the alignment
tensor,A, given by

where θi is the angle between the molecular axisi and the
direction of the external magnetic field, which is taken as the
laboratoryZ axis. The brackets indicate an average obtained
from the orientational statistics of the particle. TheA tensor
and henceSmol are to be calculated according to the specific
model for the particle alignment, in our case, the liquid
crystalline array of bicelles. Following other authors,23 small
deviations of the real system from the orientational model are
accounted for by the introduction of a correction factor, here
denoted asScorr, that will be close to unity (typically 0.823).

The alignment tensor,A, can also be characterized by its axial,
Aa, and rhombic,Ar, components defined in terms of its
eigenvalues asAa ) 1/3[Az - (Ax + Ay)/2] andAr ) 1/3(Ax -
Ay), where the order of the eigenvalues is|Az| > |Ay| > |Ax|.
The rhombicity, defined asR ) Ar/Aa.

The generalized degree of order33,34

is an invariant of the second-rank tensorA and, therefore, can
be written in terms of the eigenvalues ofA asΘ ) [2(Ax

2 +
Ay

2 + Az
2)/3]1/2. The generalized degree of order characterizes

the alignment of the molecules by a single quantity.
Bicelles are oriented in a magnetic field with their normal

direction, i.e., thez direction of the frame of reference used so
far, perpendicular to the field.35 Therefore, the orientation angle
whose cosine gives the order parameter is the complement of
the angle that we had been considering so far. The new
orientational average and order parameter,Spara, can be calcu-

(32) As the suspension of bicelles is dilute, we can assume that the
separation between neighbor planes is appreciably greater than the longest
particle dimension. This is quite reasonable, because the proteins studied
by NMR are usually below 30 kDa, with a longest length of about 40 Å.
As the separation between bicelles is large, the regions corresponding to
neighbor platelets will not overlap, and the restricted region of a platelet of
areaA1 will have the largest possible thickness (b - a), with c0 ) 1 and
volume, A1(b - a). Additionally, in dilute suspensions, the relative
orientation of different bicelles is irrelevant.

(33) Prestegard, J. H.Biol. Magn. Reson. 1999, 17, 311-355.
(34) Prestegard, J. H.; Al-Hashimi, H. M.; Tolman, J. R.Q. ReV. Biophys.

2000, 33, 371-424.

Figure 4. Order parameter,S, for prolate ellipsoids oriented by a dilute
suspension of bicelles as a function of the lipid mass concentrationc
(the reference direction is the normal to the membrane plane).

Vt

A
) δV-1 - 1

2
(14)

p(c) )
(δ/2)(V-1 - 1) - b[(1 - p-2)c2 - p-2]1/2

2[δ/2(V-1 - 1) - bI0(p,1)]
(15)

Sperp)
- [3I2(p,1) - I0(p,1)]

2[(δ/2b)(V-1 - 1) - I0(p,1)]
(16)

DPQ ) [ µ0γPγQh

8π3〈rPQ
3〉]dPQ (17)

Smol ) Scorr∑
i
∑

j

Aij cosνi
PQ cosνj

PQ ) ScorrvPQ
T ‚A ‚vPQ (18)

(i, j ) 1, 2, 3 orx, y, z)

Aij ) 1
2

〈3 cosθi cosθj - δij〉 (19)

(i, j ) x, y, z and δij ) 1 if i ) j and

δij) 0 if i * j)

Θ ) x2

3
∑

i
∑

j

Aij
2 (20)

Orientation of Rigid Particles by Planar Obstacles J. Am. Chem. Soc., Vol. 123, No. 48, 200112041



lated for this angle as described in section 5 of the Appendix,
with the result expressed as

This expression explicitly includes the averaging resulting from
rotational disorder of the bicelle normal in the plane perpen-
dicular to the magnetic field.

The alignment tensor of any axially symmetric particle is
diagonal and determined by the order parameter of the symmetry
axis of the particle with respect to the laboratoryZ axis, Spara

and given by

Therefore, we haveAa ) Az/2 ) Spara/2 and the generalized
degree of order isΘ ) Spara.

Individual dipolar couplings, from different internuclear
vectors within the molecule, can be calculated by writingvT‚
A‚v in terms of the orientation of the vector with respect to the
molecular axis. The details are described in section 6 of the
Appendix. Here we just mention the main results. The main
contribution to molecular order parameter for vectorPQ takes
the formvT‚A‚v ) SparaSvec, with

whereRPQ is the angle subtended by vectorPQ and the main
axis of the axially symmetrical ellipsoid. Substituting this result
in eq 18 leads us todPQ ) -SLSScorrSparaSvec. With the value for
the order parameter given by eq 23, we obtain the explicit result
for the expected attenuation from its maximum value of the
dipolar coupling between two nuclei P and Q in an ellipsoidal
particle

Thus, the information needed for the calculation ofDPQ, apart
from physical constants, is the following: the volume fraction
and thickness of the bicelles,V andδ ; the axial longest length
and axial ratio of the particle, 2b andp; for each PQ vector, its
angleRPQwith the main particle axis; and finally, the generalized
order parameterSLS that is usually available from other NMR
experiments. The functionsI2(p,1) andI0(p,1) are given by eqs
6 and 7.

Our general result can be further simplified for some limiting
cases that may be valid in practice. Thus, if the suspension of
bicelles is very dilute, then the denominator of eq 16 reduces

to δ/(bV). Another limit is when the overall shape of the particles
is nearly spherical, represented by ellipsoid withp close to 1.
A series expansion ofI2(p,1) and I0(p,1) aroundp ) 1 (see
Appendix, section 4) leads to the result 3I2(p,1) - I0(p,1) )
(4/15)q, with q ) p -1. If both limits (very dilute suspension of
bicelles and nearly spherical particles) are applicable, we obtain
an extremely compact and simple result:

In those conditions, the dipolar coupling is proportional to the
volume fraction of the platelets, proportional to the ratio of the
longest particle dimension to the bicelle thickness, proportional
to the anisommetry measured byq, and the constant2/15, proper
of the ellipsoidal geometry, will not be much different for
nonellipsoidal geometry. Equation 25 predicts the order of
magnitude ofdPQ for typical protein-bicelle systems: ifSLS )
0.85,Scorr ) 0.8, cosRPQ ) 1 (maximum),V ) 0.05, andδ )
40 Å for the bicelles and 2b ) 40 Å with p )1.5 for the protein,
we finddPQ ) -0.0023, of the range of 10-3-10-2. Calculation
of dPQ using the complete eq 24 is very fast, sinceI2 andI0 are
simple analytical expressions, and has been incorporated in the
computer program that performs the whole calculation ofdPQ

from the three-dimensional structure of a protein, as described
below.

Ellipsoidal Representation of a Rigid Particle

The application of our analytical procedure to real proteins
requires a representation of the particle by a prolate, revolution
ellipsoid. For globular proteins, such a representation is accept-
able since their shape is compact, not far from spherical, and it
is well known that they are mostly prolate.36-38 Various physical
criteria could be used for the equivalence; we adopt a simple
and reasonable choice based on the equivalence of the moments
of inertia. Specifically, we consider the gyration tensor defined,
for a system ofN discrete, identical pointlike elements, as

wheresi is the vector going from the particle’s center of mass
to the position of theith element. The particle is discretized by
three-dimensionally superimposing it to a hexagonal, closest
packed lattice; the lattice nodes that fall within the particle are
the elements to be used in eq 26. The rigid particle is initially
represented by a set of overlapping spheres, representing
individual extended (non-hydrogen) atoms, whose radii are taken
identical for simplicity, with a value of about 2 Å, close to
typical van der Waals radii of extended atoms. The spacing of
the lattice is about 0.5 Å. This modeling procedure follows
closely that employed to build the so-called filling model in
hydrodynamic calculations.39,40

The gyration tensor calculated for all the nodes belonging to
the particle is diagonalized to obtain its three eigenvalues, which
for the reasons described below are denoted in the orderGz >
Gx > Gy, and we obtain also the corresponding eigenvectors.

(35) Modified bicelles that are oriented with their normal in the direction
of the field can also be produced by the addition of lanthanides or lipids
modified with aromatic groups. In this case, the order parameter would be
Sperp, given by eq 16. However, the application reported here is for the
more frequent case, governed by eq 21. Other orienting systems, such as
rodlike phages, form liquid crystalline phases and the present equations
would not apply. In addition, typical phage systems are charged and induce
orientation mainly by electrostatic effects. Modifications to include
electrostatic effects are presently being developed.

(36) Tanford, C.Physical Chemistry of Macromolecules; Wiley: New
York, 1961; Chapter 6.

(37) Harding, S. E.; Rowe, A. J.Int. J. Biol. Macromol. 1982, 4, 160.
(38) Harding, S. E.; Co¨lfen, H. Anal. Biochem. 1995, 228, 131.
(39) Garcı´a de la Torre, J.; Huertas, M. L.; Carrasco, B.Biophys. J. 2000,

78, 719-730.
(40) Carrasco, B.; Garcia de la Torre, J.Biophys. J. 1999, 76, 3044-

3057.

Spara)
[3I2(p,1) - I0(p,1)]

4[(δ/2b)(V-1 - 1) - I0(p,1)]
(21)

A ) (-Spara/2 0 0
-Spara/2 0

0 0 Spara
) (22)

Svec )
3 cos2RPQ - 1

2
(23)

dPQ )

- SLSScorr

(3 cos2RPQ - 1)

2

[3I2(p,1) - I0(p,1)]

4[(δ/2b)(V-1 - 1) - I0(p,1)]
(24)

dPQ ) - SLSScorr

3 cos2RPQ - 1

2
V2b

δ
2
15

q (25)

GRâ )
1

N
∑
i)1

N

si
(R) sj

(â) (R, â ) x, y, z) (26)
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The molecule will be adequately represented by a revolution
ellipsoid when two of the eigenvalues are quite similar, while
the other is appreciably distinct. The shape is prolate when the
unique eigenvalue is the largest one,Gz, and Gx ≈ Gy. The
eigenvalues of the gyration tensor of a prolate ellipsoid with
semiaxesb > a ) a areGz ) b2/5 andGy ) Gx ) a2/5. Thus,
our choice for the equivalent ellipsoid is that withb ) (5Gz)1/2

and a ) [5(Gx + Gy)/2]1/2. Furthermore, the eigenvalue
corresponding toGz gives the orientation of the symmetry (long)
axis of the ellipsoid (needed to calculateRPQ for eq 23).41 Rg

has been proposed as a useful constrain in structural refine-
ments.42

Rhombicity Correction

As revealed by the analysis of experimental data (vide infra),
the revolution ellipsoid provides an acceptable prediction of the
dipolar couplings for proteins that conform approximately to
this axially symmetrical model. Geometrically this happens
when the minor eigenvalues of the gyration tensor are similar,
Gx ≈ Gy, and results in an alignment tensor areAx ≈ Ay. To
account adequately for cases in which this situation does not
hold, we have devised a correction with a perturbative point of
view. The generalized degree of order for a rhombic structure
can be written as

For typical values ofR, the departure ofΘ from its value in an
axially symmetrical system (2Aa) is solely in the order of a few
percent. It is therefore justified to take the values obtained for
the axially symmetrical model as a first-order approach and to
introduce the rhombicity correction a posteriori in a perturbative
fashion.

The procedure, which is based on the rhombicity treatment
of the dipolar coupling and alignment tensors by Clore et al.,43,44

is described in detail in the Appendix (see Supporting Informa-
tion). Here we just describe the main aspects. From eq 1 of
Clore et al.,44 the dipolar couplings for a case of nonvanishing
rhombicity can be written as

where

and

In eq 28,DPQ(R) is the dipolar coupling associated with an

internuclear vector PQ in the general case andDPQ(0) is the
value that would correspond to a particle with the same axial
(z) eigenvalue and eigenvector, but with degenerated eigenvalues
in the other two directions.R is the rhombicity, andR andâ in
eq 29 are the polar angles of the PQ vector.45

Considering that the shape of the particle is similarly reflected
in the alignment,A, and gyration,G, tensors, we assume that
the rhombicity of the eigenvectors of both tensors should be
similar. Therefore, we formulate the hypothesis that the rhom-
bicity R to be used in eq 29 can be calculated as

using, as above, the criterionGz > Gx > Gy, to ensure thatR is
positive.

In summary, the perturbative rhombicity correction consists
of multiplying the dipolar coupling calculated with the axially
symmetrical ellipsoid by the factorF of eq 29, using the
rhombicity of the gyration tensorG and the polar angleâ for
each vector, measured from the eigenaxis corresponding to the
intermediate eigenvalue ofG.

Application to Experimental Systems

We have applied the analytical procedure for calculating
dipolar couplings from three-dimensional structures to a number
of unrelated proteins for which dipolar couplings have been
measured in the presence of bicelles.46-53 The results are
summarized in Table 1. In all cases, there is a good to excellent
agreement between theory and experiment and an excellent
agreement between the dipolar couplings calculated using the
analytical method and the exhaustive enumeration of conforma-
tions method of Zweckstetter and Bax.23 For each protein, the
principal values of the gyration tensor and the dimensions of
the equivalent ellipsoid are reported.

To illustrate the application of our procedure for the calcula-
tion of dipolar couplings, we describe the case of the cellular
factor BAF (barrier-to-autointegration), a 21 000Mw dimer
whose three-dimensional structure has been solved including
an extensive use of dipolar couplings.46 The three-dimensional
mean regularized structure and the experimental restraints are
available in PDB file 2ezx. Diagonalization of the gyration
tensor yields eigenvaluesGy ) 49.6,Gx ) 63.6, andGz ) 187.9
and a radius of gyration of 17.35. From these, the dimensions
of the semiaxes of the ellipsoid areb ) 30.7 Å anda ) 16.8
Å, with an axial ratiop ) 1.82. The eigenvector associated with
Gz provides the orientation of the ellipsoid in the coordinate
axes of the PDB structure. The cosRPQ values are obtained
from the projection of the normalized internuclear NH vectors
onto thez principal axis. The Lipari-Szabo order parameter
was set to a typical value,SLS ) 0.85, for all NH bonds. The
empirical constantScorr that accounts for imperfect alignment
of the bicelles was set to 0.8 following Zweckstetter-Bax.23

The averaged mean NH distance was set to 1.04 Å. The volume
fraction of bicelles was set toV ) 0.058, assuming a density of
1.03 g/cm3. The thickness of the bicelles was set toδ ) 40 Å.

Figure 5 shows a comparison of the experimental NH dipolar
couplings with the results of the calculations using the analytical
expression or the SSIA method.23 Despite the drastic simplifica-

(41) The gyration tensor is closely related to the tensor of inertia; the
eigenvectors of the inertial and gyration tensor are the same, and the
principal moments of inertia are combinations of the eigenvalues of the
gyration tensor:Ix ) Gy + Gz, and so on. The trace of the inertia tensor is
the squared radius of gyration,Rg. However, the gyration tensor gives a
more faithful representation of the molecule shape, which is the factor that
determines the orientation of proteins by bicelles.

(42) Kuszewski, J.; Gronenborn, A. M.; Clore, M. G.J. Am. Chem. Soc.
1999, 121, 2337-2338.

(43) Clore, G. M.; Gronenborn, A. M.; Tjandra, N.J. Magn. Reson. 1998,
131, 159-162.

(44) Clore, G. M.; Gronenborn, A. M.; Bax, A.J. Magn. Reson. 1998,
133, 216-221.

(45) AsRand the axial eigenvalueAz are defined as positive, the ordering
of the other eigenvalues has to beAx > Ay.

(46) Cai, M.; Huang, Y.; Zheng, R.; Wei, S.-Q.; Ghirlando, R.; Lee, M.
S.; Craigie, R.; Groneneborn, A. M.; Clore, G. M.Nat. Struct. Biol. 1998,
5, 903-909.

Θ ) 2Aax1 + 4
27

R2 (27)

DPQ(R) ) FDPQ(0) (28)

F ) 1 + 3
2
R

sin2 R cos2 2â
3 cos2â - 1

(29)

R )
Ax - Ay

Az - (Ax + Ay)/2
(30)

R )
Gx - Gy

Gz - (Gx + Gy)/2
(31)
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tion implied in the assumption of an ellipsoidal shape, the
analytical results are in very good agreement with the experi-
mental results and give results comparable to those obtained
with the program SSIA although at a computational cost 10.000
times smaller.

A comparison of the calculated values using our approximate
analytical function and the exhaustive exploration of orientations
of the SSIA program provide some insight on the applicability
and limitations of our method. Figure 6 shows plots of dipolar
couplings calculated by the two methods for four different
proteins. In all cases, the regression lines have slopes close to
1 that pass through the origin and the regression coefficients
are higher than 0.92. For proteins that have an appreciable
rhombic component, the assumption of axial symmetry in the
analytical calculation causes a triangular shape for the distribu-
tion of points in the plots for some of the proteins, such as
cyanovirin-N.47 The rhombic component introduces a higher
dispersion in the dipolar couplings of NH vectors oriented
perpendicular to the principal axis of the ellipsoid. The
introduction of the correction the factorF defined by eq 29,
improves dramatically the agreement between the calculated and

predicted residual dipolar couplings. This improvement is shown
in Figure 7 for the proteins KH3 and GAIP. The rhombicity
correction also introduces a significant improvement in the
correlation coefficients between the analytically calculated
dipolar couplings and both the experimental values and the
results from the SSIA program. This confirms the above
interpretation and proves that the rhombicity effects can be
effectively introduced in the analytical calculation of residual
dipolar couplings.

For the smaller proteins, such as ubiquitin,50 (not included
in the figure) and protein G,51,52the agreement between the two
methods tends to be poorer. This probably reflects the fact that
local deviations from the regular geometrical shape have a
stronger effect. In the case of protein G,51,52 composed of a
singleâ-sheet and a singleR-helix, dipolar couplings calculated
by the two methods give slightly different correlation lines for
the NH groups located in theR-helix and in theâ-sheet structural

(47) Bewley, C. A.; Gustafson, K. R.; Boyd, M. R.; Covell, D. G.; Bax,
A.; Clore, G. M.; Gronenborn, A. M.Nat. Struct. Biol. 1998, 5, 571-578.

(48) Baber, J. L.; Libutti, D.; Levens, D.; Tjandra, N. J. Mol. Biol. 1999,
289, 949-962.

(49) de Alba, E.; De Vries, L.; Farquhar, M. G.; Tjandra, N.J. Mol.
Biol. 1999, 291, 927-939.

(50) Ottiger, M.; Bax, A.J. Am. Chem. Soc. 1998, 120, 12334-12341.
(51) Derrick, J. P.; Wigley, D. B.J. Mol. Biol. 1994, 243, 906-918.
(52) Gronenborn, A. M.; Filpula, D. R.; Essig, N. Z.; Achari, A.;

Whitlow, M.; Wingfield, P. T.; Clore, G. M.Science1991, 253, 657-661.

Table 1. Calculation of NH Dipolar Couplings of Proteins in the Presence of Bicelles by an Analytical Procedure Using an Ellipsoidal
Representation of Proteins. Correlation with Experimental and Simulation (SSIA) Results

gyration tensora ellip modelb correlation

protein PDB code Gz Gx Gy a b ranal vs exp
2 c ranal vs SSIA

2 d

BAF46 2ezx 187.9 63.62 49.65 16.8 30.7 0.97 (0.98) 0.97 (0.98)
cyanovirin-N47 2ezm 149.9 34.54 26.08 12.3 27.4 0.71 (0.68) 0.96 (0.97)
KH348 1khm 151.9 56.59 27.62 14.5 27.6 0.81 (0.83) 0.95 (0.99)
GAIP49 1 cmz 177.1 35.76 17.71 15.1 29.8 0.91 (0.92) 0.92 (0.97)
ubiquitin50 1d3z 74.33 42.00 31.31 13.5 19.3 0.74 (0.72) 0.89 (0.93)
protein G domaine 51 1igd 64.39 29.10 20.90 11.2 17.9 0.97 (0.98) 0.97 (0.98)
protein G domain52 3gb1 67.03 30.15 22.06 11.4 18.3 0.94 (0.96) 0.97 (0.98)
lysozyme53 1e8l 108.8 48.42 43.64 15.2 23.3 f0.87 (0.90) 0.93 (0.93)

a The gyration tensor was calculated as explained in text. The eigenvalues areGz > Gx > Gy. b Semiaxis of the ellipsoid model.b > a. a andb
were calculated through the formulas specified in the text.c Experimental values obtained as a restrain file in the PDB. Values in parentheses
correspond to correlation coefficients when rhombicity correction is used.d SSIA calculation data in bicelles: grid spacing 0.5 Å, ionic radii 3.1.
Å, only heavy atoms used. Lipid concentration was the specified in the reference. Coordinates are from NMR structures unless stated otherwise.
Values in parentheses correspond to correlation coefficients when rhombicity correction is used.e X-ray structure.f Experimental residual dipolar
couplings corresponding to thr 7.5% w/v sample DMPC-DHPC-CTAB 2.9:1:0.1.

Figure 5. Residual dipolar couplings for factor BAF (barrier-to-autointegration) oriented using a 6% w/v suspension of DMPC-DHPC bicelles.
Correlation between experimental and calculatedDNH using (A) the analytical expressions given in this work and (B) the SSIA program.23
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elements. This can be explained by the strong correlation of
the orientations of individual NH bonds within a secondary
structure element and the fact that the subset of orientations
that may be allowed in one of the models and not in the other
contribute differently to the dipolar couplings of NH groups in
different parts of the molecule.

The calculation assumes that the orientation has steric origin
and that the distribution of protein molecules along the normal
of the bicelle is uniform. Electrostatic effects can have an effect
on both assumptions. Schwalbe et al.53 studied the orientation
of lysozyme by bicelles formed by 5% DMPC-DHPC (2.9:1)
and DMPC-DHPC-CTAB (2.9:1:0.1). DMPC-DHPC bi-
celles, although formally neutral, are reported to have a slight
negative charge as a result of partial hydrolysis of the phos-
pholipid headgroups.54 Addition of cetyltrimethylammonium
bromide (CTAB) results in positively charged bicelles. Lysozyme
has positive charge at pH 6.5. Figure 8 shows plots of the
experimental versus calculated dipolar couplings for lysozyme
oriented using 5% DMPC-DHPC (2.9:1) bicelles and 7.5%
DMPC-DHPC-CTAB (2.9:1:0.1) bicelles. The slope of the
regression line is 1.5 for the DMPC-DHPC and 0.7 for the
positively charged bicelles. Deviations from the unit slope,

beyond the experimental uncertainty in the amount of lipid
added, can be explained by the electrostatic attraction/repulsion
between the positively charged protein and the negatively/
positively charged bicelles that increases/decreases the concen-
tration of protein in the proximity of the bicelle where orientation
is restricted. In addition, electrostatic interactions cause changes
in the orientation of the steric alignment tensor. By comparing
experimental and predicted dipolar couplings, a change in
orientation of the alignment tensor with respect to the calculated
one causes a poorer fit and a roughly ellipsoidal shape in the
distribution of points. Triangular point distributions suggest that
nonsteric effects are introducing an additional rhombic com-
ponent.

Concluding Remarks

In this paper, we have derived expressions to calculate
analytically the orientation acquired by a particle with the shape
of a prolate ellipsoid interacting with a planar surface. The
resulting expressions allow the calculation of the orientation of
a particle embedded in a lipid bilayer or the calculation of the
residual dipolar couplings expected from partially oriented
globular proteins in the presence of bicelles.

The key assumption that the shape of a globular protein can
be represented by an axially symmetrical ellipsoid is validated
by the good agreement observed between residual dipolar

(53) Schwalbe, H.; Grimshaw, S. B.; Spencer, A.; Buck, M.; Boyd, J.;
Dobson, C. M.; Redfield, C.; Smith, L.Protein Sci. 2001, 10, 677-688.

(54) Losonczi, J. A.; Prestegard, J. H. J. Biomol. NMR1998, 12, 447-
451.

Figure 6. Comparison of residual dipolar couplings calculated using the analytical procedure described in this work and the SSIA program for the
proteins: (A) BAF, (B) lysozyme, (C) cyanovirin-N, and (D) protein G domain X-ray structure. The coordinates were obtained from the PDB files
indicated in Table 1.
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couplings calculated analytically and those measured experi-
mentally or calculated using a simulation that systematically
explores all the allowed orientations of the protein.

The study of a number of proteins confirms the wide
applicability of the analytical formulas. Known limitations
include the assumption that the protein is prolate. The major
limitation is the breakdown of the assumption that steric effects
dominate the orientation. The simple expressions for the steric
component should facilitate the introduction of additional
orientation effects. Electrostatic interaction between charged
proteins and charged obstacles is probably the most important
of them, and we are presently working on analogous expressions
to include electrostatic effects, as well as to calculate the effects
of obstacles of different shapes, such as cylinders.

The decrease in computational cost of the analytical formulas
opens the possibility of using global shape constraints derived
from dipolar couplings in the initial stages of the structural
determination procedure.
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Figure 7. Comparison of residual dipolar couplings calculated using the analytical procedure described in this work (with and without rhombicity
correction) and the SSIA program: (A) KH3 without rhombicity correction, (B) KH3 with rhombicity correction, (C) GAIP without rhombicity
correction, and (D) GAIP with rhombicity correction.

Figure 8. Comparison of experimental and analytically calculated
residual dipolar couplings for lysozyme oriented in 5% DMPC-DHPC
bicelles (full symbols) and 7.5% DMPC-DHPC-CTAB (2.9:1:0.1)
bicelles (open symbols). The corresponding regression lines and a
straight line with unitary slope are included.
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Supporting Information Available: A Microsoft Word
document containing an appendix to this article describes a
general theory of the orientation of rigid particles by planar
obstacles, with a step-by-step deduction of the results reported
in this work. This material is available at the author’s Web site
http://leonardo.fcu.um.es/macromol. A computer program that

implements our procedure will be available from this address.
This material is available free of charge via the Internet at http://
pubs.acs.org. See any current masthead page for ordering
information and Web access instructions.
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